Preliminary communication

Tautomerism in $[(R_3M)Co(CO)_3]_2$ complexes (R = alkyl, and M = P, As, or Sb); the consequences of changes in R and M

D.J. THORNHILL and A.R. MANNING Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received February 16th, 1972)

Although the predominant species in solutions of $[(Et_3P)Co(CO)_3]_2$ does not contain bridging carbonyl groups, small amounts of CO bridged tautomers may be detected¹. Replacement of the triethylphosphine by a triethylarsine ligand causes a marked increase in the importance of these bridged isomers². The b-b and b-nb equilibria* depend on solvent², and temperature³.

The infrared spectrum of $[(Et_3Sb)Co(CO)_3]_2 \star \star$ in heptane solution resembles that of its Et_3 As analogue except that absorption bands due to the nb form are much weaker. Thus the $b-[(R_3M)Co(CO)_3]_2$ tautomers increase in importance for $R_3M = Et_3P < Et_3As < Et_3Sb$. A similar variation has been observed for complexes of the type $(R_3M)Co_2(CO)_7$ ⁴.

Both $[(n-Pr_3 As)Co(CO)_3]_2$ and $[(n-Bu_3 As)Co(CO)_3]_2$ show infrared spectra which are similar to that of the triethylarsine derivative. There are small changes in the b-b isomer ratio, but the proportions of nb species present in the solutions are more or less constant. However, both $[(i-Pr_3 As)Co(CO)_3]_2$ and $[(i-Bu_3 As)Co(CO)_3]_2$ exist largely or solely as nb tautomers of D_{3d} symmetry in heptane solutions. The dramatic consequences of the branching of alkyl groups in R_3M ligands is underlined by the absence of b complexes even in alkane solutions of $[(i-Pr_3 Sb)Co(CO)_3]_2$.

The frequencies of the $\nu(CO)$ vibrations of these complexes do not vary markedly with the R₃M ligand. This suggests that the variations in isomer ratios are not due to electronic effects. Furthermore, the electronic consequences of substitution of a methyl group for a proton on the β -carbon atom would not be expected to be greatly different in going from As(CH₂CH₂CH₂CH₃)₃ to As[CH₂CH(CH₃)₂]₃ than from

** All new complexes were prepared as described in ref. 1, and were characterised by melting points, analyses, and infrared spectra.

J. Organometal. Chem., 37 (1972)

 $[\]star$ b = CO bridged isomer, and nb = non-bridged isomer.

As $(CH_2CH_3)_3$ to As $(CH_2CH_2CH_3)_3$.

A possible explanation for such changes may lie in the steric requirements of the R₃M ligand as the i-Pr and i-Bu groups, and thus i-Pr₃As and i-Bu₃As, are undoubtedly bulkier than their straight-chained homologues. Thus they would be expected to stabilize the nb isomers of D_{3d} symmetry where the interactions between R₃M and the other ligands would be much less important than the inter-ligand interactions in the b tautomers where the cobalt atoms are six, rather than five, coordinate^{1,2}. This suggestion is consistent with the increase in importance of b-[(R₃M)Co(CO)₃]₂ species in going from M = P < As < Sb. The steric bulk of the R₃M ligand is due, primarily, to the three alkyl groups, R. The increase in the size of M along the above series serves to increase their separation from the cobalt atom, and thus to decrease the effective bulk of R₃M.

REFERENCES

- 1 A.R. Manning, J. Chem. Soc. A, (1968) 1135, and references therein.
- 2 A.R. Manning, J. Chem. Soc. A, (1968) 1665.
- 3 K. Noack, personal communication,
- 4 G. Bor, Inorg. Chim. Acta, (Proc. First Intern. Symp. Chem. Metal Carbonyls, Venice), (1968) F2.

J. Organometal. Chem., 37 (1972)